LFP power spectra in V1 cortex: the graded effect of stimulus contrast.
نویسندگان
چکیده
We recorded local field potentials (LFPs) and single-unit activity simultaneously in the macaque primary visual cortex (V1) and studied their responses to drifting sinusoidal gratings that were chosen to be "optimal" for the single units. Over all stimulus conditions, the LFP spectra have much greater power in the low-frequency band (< or = 10 Hz) than higher frequencies and can be described as "1/f." Analysis of the total power limited to the low, gamma (25-90 Hz), or broad (8-240 Hz) frequency bands of the LFP as a function of stimulus contrast indicates that the LFP power gradually increases with stimulus strength across a wide band in a manner roughly comparable to the increase in the simultaneously recorded spike activity. However, the low-frequency band power remains approximately constant across all stimulus contrasts. More specifically the gamma-band LFP power increases differentially more with respect to baseline than either higher or lower bands as stimulus contrast increases. At the highest stimulus contrasts, we report as others have previously, that the power spectrum of the LFP typically contains an obvious peak in the gamma-frequency band. The gamma-band peak emerges from the overall broadband enhancement in LFP power at stimulus contrasts where most single units' responses have begun to saturate. The temporal/spectral structures of the LFP located in the gamma band-which become most evident at the highest contrasts-provide additional constraints on potential mechanisms underlying the stimulus response properties of spiking neurons in V1.
منابع مشابه
Is gamma-band activity in the local field potential of V1 cortex a "clock" or filtered noise?
Gamma-band (25-90 Hz) peaks in local field potential (LFP) power spectra are present throughout the cerebral cortex and have been related to perception, attention, memory, and disorders (e.g., schizophrenia and autism). It has been theorized that gamma oscillations provide a "clock" for precise temporal encoding and "binding" of signals about stimulus features across brain regions. For gamma to...
متن کاملLocal field potential reflects perceptual suppression in monkey visual cortex.
Neurophysiological and functional imaging experiments remain in apparent disagreement on the role played by the earliest stages of the visual cortex in supporting a visual percept. Here, we report electrophysiological findings that shed light on this issue. We monitored neural activity in the visual cortex of monkeys as they reported their perception of a high-contrast visual stimulus that was ...
متن کاملInfragranular sources of sustained local field potential responses in macaque primary visual cortex.
A local field potential (LFP) response can be measured throughout the visual cortex in response to the abrupt appearance of a visual stimulus. Averaging LFP responses to many stimulus presentations isolates transient, phase-locked components of the response that are consistent from trial to trial. However, stimulus responses are also composed of sustained components, which differ in their phase...
متن کاملStimulus-induced dissociation of neuronal firing rates and local field potential gamma power and its relationship to the blood oxygen level-dependent signal in macaque primary visual cortex
The functional magnetic resonance imaging (fMRI) blood oxygenation level-dependent (BOLD) signal is regularly used to assign neuronal activity to cognitive function. Recent analyses have shown that the local field potential (LFP) gamma power is a better predictor of the fMRI BOLD signal than spiking activity. However, LFP gamma power and spiking activity are usually correlated, clouding the ana...
متن کاملThe role of the primary visual cortex in perceptual suppression of salient visual stimuli.
The role of primary visual cortex (area V1) in subjective perception has intrigued students of vision for decades. Specifically, the extent to which the activity of different types of cells (monocular versus binocular) and electrophysiological signals (i.e., local field potentials versus spiking activity) reflect perception is still debated. To address these questions we recorded from area V1 o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 94 1 شماره
صفحات -
تاریخ انتشار 2005